Some Thoughts on Action
Rule Mining

Ryan Benton
March 10, 2014
Action Rules

• Goal
 – Determine what changes must be made to attributes to change the decision result.

• Expressed
 – \(\{a, x_1 \rightarrow x_2\} \Rightarrow \{t_1 \rightarrow t_2\} \)
 • If \(a \) occurs and \(x_1 \) becomes \(x_2 \), then \(t_1 \) will become \(t_2 \).
 • \(\{\text{dark}, \text{drunk} \rightarrow \text{not_drunk}\} \Rightarrow \{\text{accident} \rightarrow \text{no_accident}\} \)
Association Mining Concepts
Concepts

- **Item**
 - An attribute-value that appears in the ‘database’

- **Itemset**
 - A set composed of one or more items

- **K-itemset**
 - Itemset composed of k items.
Measures

• Support
 – How many times has an itemset appeared in the data (database).
 – Expressed
 • Support \((A \Rightarrow B) = \text{Count}(A \cup B)\)
 • Support \((A \Rightarrow B) = P(A \cup B)\)
 • Note
 – Support\((A \cup B) = \text{Count}(A \cup B)\)
 – Support \((A \cup B) = P(A \cup B)\)
Measures

• Confidence
 – For a Rule
 • Percentage of cases in which a consequent appears given that the antecedent has occurred
 – Expressed
 • Confidence \((A \Rightarrow B) = P(B|A)\)
 • Confidence \((A \Rightarrow B) = \text{Support}(A \cup B) / \text{Support}(A)\)
Return to Concepts

• MinSup
 – The minimum support required for an itemset to be considered *frequent*.

• MinCon
 – The minimum confidence required for an rule to be considered *strong*.
Action Rule Methods
Action Rules

• Rule
 \[\{a, x_1 \rightarrow x_2\} \Rightarrow \{t_1 \rightarrow t_2\} \]

• A number of different methods exist.
 – Most from group run by Dr. Zbigniew W. Raś.

• Many use support-confidence framework
Concepts

• Attributes
 – Stable: Value may not change.
 – Flexible: Values may be changed
 – Decision: Which values are desired to change.

• User Specifies
 – Stable
 – Flexible
 – Decision (normally)
Concepts

• Action-Item
 – May be either
 • Stable value
 • Flexible value
 • Transition (flexible value → flexible value)

• Action Set
 – A set composed of one or more action-items

• K-Action Set
 – Action Set composed of k action-items
Concepts

• MinSup
 – The minimum support required for an action set to be considered frequent.

• MinCon
 – The minimum confidence required for an action rule to be considered strong.

• No Consistent Definitions!!!!
More Formally

- t_1, t_2 are two atomic action sets
- $t = t_1 \cdot t_2$ is an action set.
- Domain of the action set t
 - $\text{Dom}(t) = \text{Dom}(t_1) \bigcup \text{Dom}(t_2)$
 - *Note: Cannot have two different static values for same attribute.*
More Formally

• Rule: \(t_1 \rightarrow t_2 \)

 – \(N_s(t_1) = [A_1, A_2] \)
 • A1: All single values and for the antecedent values of all transition values.
 • A1: All single values and for the conditional values of all transition values.

 – \(N_s(t_2) = [Z_1, Z_2] \)
 • Z1: All single values and for the antecedent values of all transition values.
 • Z1: All single values and for the conditional values of all transition values.
Example

• Assume
 – Static Values: a1
 – Flexible Values: b1, b2, c1, c2, d1, d2
• \([a1, b1 \rightarrow b2] \Rightarrow [c1, d1 \rightarrow d2]\)
 – A1 = [a1, b1]
 – A2 = [a1, b2]
 – Z1 = [c1, d1]
 – Z2 = [c1, d2]
Measures
ARD Measures

• Support
 – Support(t1) = card(A1)
 • t1 = Ns(A1, A2)
 – Support(t1 ⇒ t2) = card(A1 ∩ Z1)
 • t1 = Ns(A1, A2)
 • t2 = Ns(Z1, Z2)

• Confidence
 – conf(r) = \(\frac{\text{card}(A1 \cap Z1)}{\text{card}(A1)} \times \frac{\text{card}(A2 \cap Z2)}{\text{card}(A2)} \)
 – where Conf(r) = Conf(t1 ⇒ t2)
AAR Measures

• Support
 – Support \(t_1 \) = min(\(\text{card}(A_1) \), \(\text{card}(A_2) \))
 • \(t_1 = \text{Ns}(A_1, A_2) \)
 – Support(\(t_1 \Rightarrow t_2 \)) = min(\(\text{card}(A_1 \cap Z_1) \), \(\text{card}(A_2 \cap Z_2) \))
 • \(t_1 = \text{Ns}(A_1, A_2), t_2 = \text{Ns}(Z_1, Z_2) \)

• Confidence
 – \(\text{conf} (r) = \frac{\text{card}(A_1 \cap Z_1)}{\text{card}(A_1)} \times \frac{\text{card}(A_2 \cap Z_2)}{\text{card}(A_2)} \)
 – where \(\text{Conf}(r) = \text{Conf}(t_1 \Rightarrow t_2) \)
ARED Measures

• Support
 – \(\text{Support}(t_1 \Rightarrow t_2) = \min(\text{card}(A_1 \cap Z_1), \text{card}(A_2 \cap Z_2)) \)

• Confidence
 – \(\text{Support}(t_1 \Rightarrow t_2) / \text{card}(A_1 \cap Z_1) \)
FAARM Measures

• Support
 – Support (t1) = \text{card}(A1) \times \text{card}(A2)
 • t1 = Ns(A1, A2)
 – Support (t1 \Rightarrow t2) = \text{card}(A1 \cap Z1) \times \text{card}(A2 \cap Z2)
 • t1 = Ns(A1, A2), t2 = Ns(Z1, Z2)

• Confidence
 – \text{Supp}(t1 \Rightarrow t2) / \text{Supp}(t1)
Relationships Between Measures
Support -- Identical

<table>
<thead>
<tr>
<th></th>
<th>ARD</th>
<th>AAR</th>
<th>ARED</th>
<th>FAARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARD</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AAR</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ARED</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FAARM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Support – Other Relationships

• AAR Support is subset of
 – ARD
 – FAARM

• FAARM and ARED Overlap
New Support and Confidence

• Suggested by Dr. Alaaeldin Hafez
Conditional Probability

- \(P(A|B) = \frac{P(A \cap B)}{P(B)} \)

- If independent, \(P(A \cap B) = P(A)P(B) \)

- Thus, \(P(A|B) = P(A) \)
Project Ideas

• Compare/Contrast Methods

• Compare/Contrast Measures

• Develop New Measures/Methods
Contact

• Ryan Benton

• rbenton at louisiana.edu

• Room 205, Oliver Hall
References

• D. Difallah, R. Benton, T. Johnsten and V. Raghavan, “FAARM: Frequent Association Action Rules Mining Using FP-Tree”, in *Workshop of Domain Driven Data Mining (part of 11th International Conference on Data Mining Workshops)*, 2011, pp. 398-404