Transforming Data into Knowledge

Matthew Renze
Iowa Code Camp
Spring 2013
About Me

• Independent software consultant
• 13 years of Agile software development experience

• Data-driven desktop, server, and web apps
 • Web-based GIS data warehouse
 • Energy data ETL application
 • Global data management system
 • Intelligent lighting control systems
About Me

• Education
 • BS in Computer Science
 • BA in Philosophy
 • Minor in Economics
 • Focus on Artificial Intelligence and Machine Learning
 • AS in MIS and Business Administration

• Training
 • Kimball Group Training in Data Warehousing
 • ESRI ArcGIS, ArcSDE, ArcGIS Server Training
 • Various data analysis and statistics courses
Purpose

To provide a high-level overview of the tools the software industry uses to transform data into knowledge, specifically for the purpose of making better decisions
Topics will include

• Sensor Data
• Transactional Data
• Semi-structured / Unstructured Data
• Data ETL
• Data Warehouses
• OLAP Cubes
• Statistical Analysis
• Data Visualization
• Data Exploration
• Data Mining
• Machine Learning
• Growing industry trends
Audience

• Anyone who is interested in:
 • Transforming data into knowledge
 • Understanding the data value chain
 • Learning about the tools used in data analysis

• Session is 100-level
 • No previous technical knowledge is required
 • Presentation will be very high-level and very broad in scope
Motivation

• Question:
 • Why do we want to transform data into knowledge?

• Answers:
 • To make better decisions
 • To understand our world
 • To make predictions about the future
 • Knowledge is power and power is awesome!
Motivation

• Question:
 • What are data and knowledge?

• Answers:
 • **Data** are quantitative or qualitative values belonging to objects
 • **Knowledge** (for our purposes) is any model (mental or computational) that helps us make better decisions
Motivation

• Question:
 • How do we transform data into knowledge?

• Answer:
 1. Collect Data
 2. Organize Data
 3. Analyze Data
Overview

Sensor-based System

Transaction-based System

Semi-/Unstructured System

Collect Data

Organize Data

Analyze Data

Data ETL

Data Warehouse

Data Mart

Analysis Cube

Statistical Analysis

Data Visualization

Data Exploration

Data Mining

Machine Learning
Sensor-based Systems

- Sensor-based System
- Transaction-based System
- Semi-/Un-Structured System

Data Flow:

1. Collect Data
2. Organize Data
3. Analyze Data

Data ETL → Data Warehouse

Analytic Processes:
- Statistical Analysis
- Data Visualization
- Data Exploration
- Data Mining
- Machine Learning

Analysis Cube → Data Mart
Sensor

- Converts an observable physical quantity into a representation that can be read by an observer (i.e., data)
- For example: Temperature => 98.6°F
Types of Sensors

• Thermometer
• Rain Gauge
• Air Flow
• Smoke Detector
• Breathalyzer
• Fish Counter

Source: Sensorpedia
Data Logger

- Device that connects to a series of sensors
- Reads the values of those sensors at a regular time interval
- Writes the values to a log file or database
- Typically connected to a network via ethernet
- Wireless data logger networks exist too

Source: Onset Computer Corporation
Control System

• Device that connects to a series of sensors and actuators
• Reads sensors at regular intervals
• Sends commands to actuators
• Runs a program that maps sensor inputs to expected actuator outputs
• Examples: HVAC, Industrial Control

Source: Johnson Controls
Automation System

• Computer system that connects to control systems, data loggers, and sensors
• Reads data from sources
• Sends commands to control systems
• Runs programs to automate entire system
• Typically found in large buildings

Wireless Sensor Network

• A set of wireless sensor devices that can communicate with one another
• Data is forwarded through sensor nodes to a gateway node
• Uses peer-to-peer communication to maximize reliability and resilience

Transaction-based Systems

- Sensor-based System
- Transaction-based System
- Semi-/Un-Structured System

Data ETL → Data Warehouse

Data Mart → Analysis Cube

- Statistical Analysis
- Data Visualization
- Data Exploration
- Data Mining
- Machine Learning

Collect Data
Organize Data
Analyze Data
Transaction

• An exchange between two or more entities
• Occurs at a point in time (i.e., an event)
• Types of Transactions
 • Business Transactions
 • Banking Transactions
 • Sales Transactions
• Communications
 • Tweets on Twitter feed

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Customer</th>
<th>Product</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2012-10-27</td>
<td>John</td>
<td>Pizza</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2012-10-27</td>
<td>John</td>
<td>Soda</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2012-10-27</td>
<td>Jill</td>
<td>Salad</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2012-10-27</td>
<td>Bob</td>
<td>Milk</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2012-10-28</td>
<td>Sue</td>
<td>Soda</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2012-10-28</td>
<td>Bob</td>
<td>Pizza</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2012-10-28</td>
<td>Jill</td>
<td>Pizza</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2012-10-28</td>
<td>Jill</td>
<td>Soda</td>
<td>3</td>
</tr>
</tbody>
</table>
Operational System

- Generic term used to describe any application or system used to process day-to-day transactions
- Typically focused on data entry of some kind
- Typically uses an OLTP (On-Line Transaction Processing) relational database to store data
Operational System Examples

• Line-of-Business (LOB) Application
 • Data Entry Applications
 • Retail Point-of-Sale (POS) Terminal

• Enterprise Applications
 • Customer Relations Management (CRM)
 • Enterprise Resource Planning (ERP)

• Social Networking Applications
 • Facebook
 • Twitter
Semi- / Unstructured Systems

- Sensor-based System
- Transaction-based System
- Semi- / Unstructured System

Collect Data

Organize Data

Analyze Data

Data ETL → Data Warehouse

Data Mart → Analysis Cube

Statistical Analysis → Data Visualization
Data Exploration → Data Mining
Machine Learning
Semi-Structured Data

• Data that do not conform to the standard relational data model
• Data are self-describing
• Uses tags or markers separate semantic elements
• Typically hierarchical in nature
Semi-Structured Data

- HTML (Hyper-Text Markup Language)
- XML (eXtensible Markup Language)
- JSON (Java Script Object Notation)

```xml
<?xml version="1.0" encoding="utf-8"?>
<person>
  <firstName>John</firstName>
  <lastName>Smith</lastName>
  <age>25</age>
  <address>
    <streetAddress>21 2nd Street</streetAddress>
    <city>New York</city>
    <state>NY</state>
    <postalCode>10021</postalCode>
  </address>
  <phoneNumber type="home">212 555-1234</phoneNumber>
  <phoneNumber type="fax">646 555-4567</phoneNumber>
</person>
```

```json
{
  "firstName": "John",
  "lastName": "Smith",
  "age": 25,
  "address": {
    "streetAddress": "21 2nd Street",
    "city": "New York",
    "state": "NY",
    "postalCode": "10021"
  },
  "phoneNumber": [
    {
      "type": "home",
      "number": "212 555-1234"
    },
    {
      "type": "fax",
      "number": "646 555-4567"
    }
  ]
}
```
Unstructured Data

- Data that do not conform to the standard relational data model
- Data are not self-describing (i.e., no tags)
- Technically, there is always structure, just not structure in a relational data model sense

A bunny with a pancake on his head
Unstructured Data

- Text
- Images
- Audio
- Video
Data ETL

Sensor-based System

Transaction-based System

Semi-/Un-Structured System

Collect Data

Organize Data

Analyze Data

Data ETL

Data Warehouse

Data Mart

Analysis Cube

Statistical Analysis

Data Visualization

Data Exploration

Data Mining

Machine Learning
Data ETL

• ETL stands for Extract, Transform, and Load
• Process of extracting, transforming, and loading data from a source data system into a data warehouse
• Occurs in a Data Staging Area
• Typically done as a nightly routine
Data Extraction

• Process of extracting data from the operational system

• Data can be extracted:
 • Directly from operational database (via SQL)
 • Indirectly from operational database export files
 • Indirectly from an Operational Data Store (ODS)
 • An ODS is typically a replica or mirror of the operational database; however, the term can mean many things
Feature Extraction

• When performing ETL on unstructured data, features must be extracted from the raw data

• Examples:
 • Extracting word counts from a text document
 • Extracting text from a document image (OCR)
 • Extracting faces from images

• Purpose is for dimensionality reduction
Data Transformation

• Process of transforming operational data into a form best suited for reporting and analysis

• Typical data transformations include:
 • Projections (i.e., selecting a subset of columns)
 • Decoding (e.g., “M” to “Male”, “F” to “Female”)
 • Joining data from multiple data sources
 • Performing table lookups
 • Calculating (e.g., amount = price * quantity)
 • Transposing (e.g., pivoting columns into rows)
 • Cleaning Data (i.e., cleaning up bad data)
Data Loading

• Process of load data into the data warehouse or analysis cube
• Typically done as a bulk insert
ETL Package
Popular ETL Software

- IBM – Information Server (Datastage)
- Informatica – PowerCenter
- Microsoft – SQL Server Integrations Services (SSIS)
- Oracle – Data Integrator / Warehouse Builder
- SAP Business Objects – Data Integrator
- SAS – Data Integration Studio
- Clover ETL (open source)
- Many companies still hand code their ETL in SQL
Data Warehouse

Collect Data

Sensor-based System

Transaction-based System

Semi-/Un-Structured System

Organize Data

Data ETL

Data Warehouse

Data Mart

Analysis Cube

Data Visualization

Data Exploration

Data Mining

Machine Learning

Statistical Analysis

Analyze Data
Data Warehouse

- Database optimized for reporting and analysis
- Typically integrates data from several operational data sources
Two Schools of Thought

Inmon
- Top-down design
- Entity-relational model
- Normalized (3NF)

Kimball
- Bottom-up design
- Dimensional model
- Denormalized (Star Schema)
Dimensional Model

• Fact
 • aka: Measures
 • A value or measurement
 • Example: Price = $100, Temperature = 98.6°

• Dimension
 • Give context to facts
 • Categorizes facts into non-overlapping regions
 • Example: Date, Customer, Region
Star Schema

Source: Microsoft
Operational System vs. Data Warehouse

Operational System
- Optimized for writing data quickly and maintaining data integrity
- Normalized to minimize duplication of data via 3NF (3rd-Normal Form)
- Typically queried in very narrow and specific ways

Data Warehouse
- Optimized for reading data quickly for reporting and analysis
- Denormalized to maximize speed of analysis via Star Schema
- Queried in very broad and unexpected ways
Data Warehouse Providers

• IBM – Infosphere and Netezza
• Microsoft – SQL Server
• Oracle – Database 11g and Exadata
• SAP – Sybase
• Teradata – Active Enterprise Data Warehouse
Data Mart

- Sensor-based System
- Transaction-based System
- Semi-/Unstructured System

Data ETL → Data Warehouse

Data Mart

- Data Visualization
- Data Exploration
- Data Mining
- Machine Learning
- Statistical Analysis

Collect Data
Organize Data
Analyze Data
Data Mart

• Provide users with access to the data in the data warehouse
• Subset of the data warehouse oriented to a specific department or team
Analysis Cube

• Multi-dimensional array
• Extremely fast for analysis operations
• Like a spreadsheet but with more than two dimensions
• Both server-based cubes or desktop cubes
• aka: OLAP Cube, Multi-Dimensional Cube
Analysis Cube

- Facts stored in each cell
- Dimensions of data map to dimensions of cube
- Dimensions can be hierarchically organized
- Typically more than three dimensions (hypercube)

Source: http://gerardnico.com/wiki/database/oracle/oracle_olap
Cube Operations

- Slice
- Dice
- Pivot
- Drill Down
- Roll Up

Analysis Cube Query Languages

- MDX – Multi-Dimensional Expressions
- XMLA – XML for Analysis

Sample MDX Query:

```mdx
select
    
    { [Measures].[Store Sales] } on columns,
    
    { [Date].[2011], [Date].[2012] } on rows

from Sales

where ( [Store].[USA].[CA] )
```

Query Results:

<table>
<thead>
<tr>
<th>Year</th>
<th>Store Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>32663.74</td>
</tr>
<tr>
<td>2012</td>
<td>65303.44</td>
</tr>
</tbody>
</table>
Analysis Cube Providers

- IBM – Cognos TM1
- Microsoft – SQL Server Analysis Services (SSAS)
- MicroStrategy – Intelligence Server
- Oracle – Hyperion Essbase / OLAP Option
- SAP – NetWeaver BW (Info Cubes)
- SAS – OLAP Cube Studio
- Pentaho – Mondrian (open source)
Data Analysis

• Process of decomposing data into constituent parts in order to study it and extract new information

• Common buzz words:
 • Decision Support Systems
 • OLAP (On-line Analytical Processing)
 • Business Intelligence
 • Data Analytics
Methods of Data Analysis

• Statistical Analysis
• Data Visualization
• Data Exploration
• Data Mining
• Machine Learning
Statistical Analysis

Sensor-based System

Transaction-based System

Semi-/Unstructured System

Data ETL

Data Warehouse

Data Mart

Analysis Cube

Statistical Analysis

Data Visualization

Data Exploration

Data Mining

Machine Learning

Collect Data

Organize Data

Analyze Data
Statistical Analysis

• Data analysis using statistical methods
Types of Statistical Analysis

• Descriptive
 • Describes data in quantitative or qualitative ways

• Inferential
 • Draws conclusions about a population from a sample

• Exploratory
 • Discovers knowledge from data by exploring it

• Predictive
 • Makes predictions about new data given existing data
Types of Statistical Analysis

• **Time Series Analysis**
 - Analysis of data changing over time

• **Geo-Spatial Analysis**
 - Analysis of data that has a geographical or spatial properties
Descriptive Statistics

• Univariate Analysis
 • Central Tendency: Mean, Median, Mode
 • Dispersion: Min, Max, Range, Quantiles, Variance, Standard Deviation

• Bivariate Analysis
 • Relationship: Covariance, Correlation coefficient

• Multivariate Analysis
Hypothesis Testing

- Used to determine statistical significance of an observation
- Start with a question
- State the null hypothesis (H_0) and an alternate hypothesis (H_1)
- Either accept H_0 or reject H_0 based on p-value
- Need sufficient sample data to make inferences about the population in general

\[
p-value = 0.34 \quad \alpha/2
\]

\[
p-value = 0.03 \quad \alpha/2
\]
Regression Analysis

• Technique for estimating the relationship between two or more variables
• Result is a function
• Types of Regression:
 • Linear Regression
 • Non-Linear Regression
 • Logistic Regression
 • Multivariate Regression
Statistical Modeling

• Statistical model of variables and their relationships

• Multiple uses:
 • Explanatory models
 • Predictive models

• Types of models:
 • Linear Model
 • Bayesian Model
 • Multi-level Model
 • Structural Equation Model

Source: Karen Bittner
Spreadsheet

- Most popular tool for basic statistical analysis
- Plug-ins available for more rigorous statistical analysis

Source: Microsoft
Statistical Analysis Software

- Very powerful tool for data analysis
- Steep learning curve
- Graphical User Interface
- Command-line Interface
- Provides both analytic and graphical methods
- Popular software:
 - SAS, SPSS, Minitab, Stata
Statistical Programming Language

- Most powerful type of data analysis tool
- Steepest learning curve
- Uses a command-line interpreter (like Python)
- Popular languages:
 - SAS
 - R

Source: The R Project
Data Visualization

• Representation of data via visual means

• Human brain is exceptionally good at visual pattern recognition

• Map dimensions of data to visual qualities
 • Location
 • Size
 • Color
 • Shape
Tabular

• **Table**
 - Data organized into rows and columns
 - Rows represent items
 - Columns represent properties of items

• **Cross-tab Matrix**
 - Data organized in a 2-dimensional matrix
 - Cells contain aggregate values scoped to intersection of row/column

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Customer</th>
<th>Product</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2012-10-27</td>
<td>John</td>
<td>Pizza</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2012-10-27</td>
<td>John</td>
<td>Soda</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2012-10-27</td>
<td>Jill</td>
<td>Salad</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2012-10-27</td>
<td>Bob</td>
<td>Milk</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2012-10-28</td>
<td>Sue</td>
<td>Soda</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2012-10-28</td>
<td>Bob</td>
<td>Pizza</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2012-10-28</td>
<td>Jill</td>
<td>Pizza</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2012-10-28</td>
<td>Jill</td>
<td>Soda</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Milk</th>
<th>Pizza</th>
<th>Salad</th>
<th>Soda</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Jill</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>John</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sue</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>
Charts and Graphs

• Visual representation of multivariate data
• Discrete and continuous data representations
• Common examples:
 • Bar/Column Chart
 • Line Graph
 • Pie Chart
 • Scatter Plot
Tree and Graph Visualization

• Visual representation of tree and graph data structures

• Common examples:
 • Tree map
 • Hierarchy chart
 • Graph diagram
 • Network diagram
Data Maps

• Visual representation of geo-spatial data

• Types of data maps:
 • Dot Map
 • Dots represents location and spatial distribution of data
 • Choropleth
 • Colors represent values of data within a boundary

Source: USDA

Report

- Provide formatted data to users
- Can contain text, tables, and graphs
- Usually printable and exportable
Types of Reports

• Canned Report
 • static query, parameters, and layout

• Parameterized Report
 • static query and layout but dynamic parameters

• Drill-down Report
 • user clicks link to get additional details

• Ad Hoc Report
 • dynamic query, dynamic layout
Dashboard

• Prove multiple KPIs (Key Performance Indicators) in a single view
• Like the dashboard of your car
• Typically provide drill-down capabilities

Source: Google Analytics
Infographic

- Visual representation of data as information
- Tells a story about data
- Intersection of data visualization and design
- Most are static but they are becoming interactive

Source: http://visual.ly/what-big-data
Reporting Providers

• IBM – Cognos Business Intelligence
• Microsoft – SQL Server Reporting Services (SSRS)
• Oracle – Oracle Reports
• SAP Business Objects – Crystal Reports
Data Exploration

Collect Data

Organize Data

Analyze Data

Sensor-based System

Transaction-based System

Semi-/Un-Structured System

Data ETL

Data Warehouse

Data Mart

Analysis Cube

Statistical Analysis

Data Visualization

Data Exploration

Data Mining

Machine Learning
Data Exploration

• Rather than starting with a specific question, we explore the data to discover knowledge
• Requires interactive tools
• Requires a rapid feedback loop
• Relies heavily on data visualization
• aka: Exploratory data analysis
Spreadsheet

- Most popular software tool for exploratory data analysis
- Interactive sorting and filtering
- Interactive data visualization

Source: Microsoft
Pivot Table and Pivot Chart

• **Pivot Table**
 • Like a cross-tabulation matrix but interactive

• **Pivot Chart**
 • Provides an interactive graphical representation of a pivot table

Source: Microsoft
Data Explorer

- Interactive data visualization tool
- Highly visual
- Highly interactive
- Rapid feedback
- Popular software:
 - Tableau
 - Spotfire

Source: Tableau
Casual Data Explorer
Data Mining

- Sensor-based System
- Transaction-based System
- Semi-/Un-Structured System

Collect Data

Organize Data

Analyze Data

- Data ETL
- Data Warehouse
- Data Mart
- Analysis Cube
- Statistical Analysis
- Data Visualization
- Data Exploration
- Data Mining
- Machine Learning
Data Mining

- Automated or semi-automated exploratory analysis of large sets of data
- Used to discover previously unknown patterns in data
- Sub-field of machine learning ("Applied ML")
Anomaly Detection

- Detection of outliers (i.e., patterns of data that do not conform to the rest of the data)

- Applications:
 - Fraud detection
 - Intrusion detection
 - Cleaning data

Source: Oracle
Association Rule Learning

- Discovers relationships between variables in large databases

- Applications:
 - Market Basket Analysis

- Classic Example:
 - Beer and Diapers

<table>
<thead>
<tr>
<th>Orders $1 Product Sub-Category</th>
<th>Appliances</th>
<th>Binders and Binder Accessories</th>
<th>Bookcases</th>
<th>Chairs & Chairmats</th>
<th>Computer Peripherals</th>
<th>Copiers and Fax</th>
<th>Envelopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appliances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binders and ..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bookcases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chairs & Ch..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer P..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copiers and ..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Envelopes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office Furnish..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office Machi..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pens & Art S..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubber Ban..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scissors, Ru..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage & O..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telephones ..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cluster Analysis

• Assigns a set of objects into groups of similar properties

• Applications:
 • Market Segmentation
 • Image Recognition
 • Crime Analysis

Decision Trees

• Builds a decision tree as a model for mapping input variables to an output variable
• Decisions branches ordered to maximize information gain
• Applications:
 • Medical diagnostics
 • Loan approval systems

Source: Machine Learning (Tom Mitchell)
Data Mining Software Providers

- IBM – Intelligent Miner
- Microsoft – SQL Server Analysis Services
- Oracle – Oracle Data Mining (ODM)
- SAS – Enterprise Miner
- Weka (open source)
- Rapid Miner (open source)
Machine Learning

• Study of algorithms that use existing data to make decisions or predictions about future data
• The algorithm learns the patterns in the data in order to make intelligent decisions
• Sub-field of Artificial Intelligence

Source: Pattern Classification (Duda, Hark, Stork)
Data Mining vs. Machine Learning

Data Mining
• Goal is to discover previously unknown knowledge from data
• Uses existing data to discover patterns so that humans can make better decisions
• Uses existing data only

Machine Learning
• Goal is to reproduce intelligent decision making
• Uses data to create a knowledge model to make decisions autonomously
• Uses existing data to make predictions about new incoming data

Note: All data mining models can be used in machine learning
Output Types

• Classification
 • Output is a discrete value
 • For example:
 • {true, false};
 • {sunny, cloudy, rainy}

• Regression
 • Output is a continuous value
 • For example:
 • Temp = 98.6°F;
 • Profit = $100
Training Types

- **Supervised**
 - Human labels data as input vs. output
 - Machine learns function mapping input to output

- **Unsupervised**
 - Machine learns structure of unlabeled data
 - Essentially data mining

- **Reinforcement Learning**
 - Machine learns good decisions from reinforcement
 - Tradeoff between exploration and exploitation
Classification

- Attempts to classify new data given known classes of existing data
- Supervised version of cluster analysis

Applications:
- Spam Detection
- Credit Scoring
- Image Recognition
- Document Classification

Source: Oracle
Bayesian Networks

- Graph of variables (nodes) and conditional probabilities (edges)
- Used to calculate probability of:
 - Causes given effects (diagnostic)
 - Effects given causes (predictive)
- aka: Belief Network
- Naïve Bayes Network
 - Assumes all variables are conditionally independent

What Causes Wet Grass?

Neural Networks

- Mathematical model inspired by biological neural networks
- Nodes have summation and activation functions
- May contain one or more hidden layers
- Backpropagation used for credit assignment
- Feedforward vs. feedback
Support Vector Machines

• Like a linear classifier
• Uses a kernel function to map non-linearly separable data to high dimensional space
• Maximum-margin hyperplane can then linearly separate data

Source: Norikazu Takahashi
Genetic Programming

- Uses an evolutionary algorithm to seek optimal decisions given an environment
- Based on biological evolution
 - Genetic crossover
 - Genetic mutation
- Successful agents reproduce; unsuccessful agents die off

Source: Genetic Programming Tree Visualizer
Ensemble Learning

• Uses multiple machine learning methods to produce better results than any single method

• Multiple weak learners vs. one strong learner

• If individual answers are better than random then we can aggregate

• Examples:
 • Random Forest Classifier
 • IBM’s Watson
Machine Learning Toolkit

• Provides a set of machine learning algorithms

• Popular ML toolkits:
 • Apache Mahout
 • KMINE
 • Rapid Miner
 • Weka
Growing Trends

- Sensor-based System
- Transaction-based System
- Semi-/Unstructured System

Data ETL → Data Warehouse

Data Mart → Analysis Cube

- Statistical Analysis
- Data Visualization
- Data Exploration
- Data Mining
- Machine Learning

Growing Trends

- Collect Data
- Organize Data
- Analyze Data
NoSQL Databases

• Growing trend of non-relational databases
 • Does not use SQL as a query language
 • Optimized for retrieval and append operations
 • Data is typically stored in key-value pairs, XML, documents, or graphs
 • Distributed across multiple machines
 • Elastic scaling (scale out vs. scale up)
 • Uses “eventual consistency” rather than ACID
In-Memory Analytics

• Growing trend of storing data for analysis in-memory rather than on on-disk
• Up to a million times faster than on-disk solutions
• Types of In-Memory Analytic Tools:
 • In-Memory ROLAP (Relational)
 • In-Memory MOLAP (Cubes)
 • In-Memory Inverted Index
 • In-Memory Associative Index
 • In-Memory Spreadsheet
Column-Store Database

- Tabular data is stored by columns instead of rows
- Can be orders of magnitude faster than row-oriented databases for analytic queries
- Typically used for data marts

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Customer</th>
<th>Product</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2012-10-27</td>
<td>John</td>
<td>Pizza</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2012-10-27</td>
<td>John</td>
<td>Soda</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2012-10-27</td>
<td>Jill</td>
<td>Salad</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2012-10-27</td>
<td>Bob</td>
<td>Milk</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2012-10-28</td>
<td>Sue</td>
<td>Soda</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2012-10-28</td>
<td>Bob</td>
<td>Pizza</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2012-10-28</td>
<td>Jill</td>
<td>Pizza</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2012-10-28</td>
<td>Jill</td>
<td>Soda</td>
<td>3</td>
</tr>
</tbody>
</table>
Hadoop

• Used for data-intensive distributed applications
• Highly distributed (i.e., many nodes)
• Massively parallel processing
• Consists of three components
 • Hadoop Kernel
 • Hadoop Distributed File System (HDFS)
 • MapReduce
Growing Analysis Trends

• Predictive Analytics
 • Uses existing data to predict future events
 • Exploits relationships between explanatory variables and predictor variables to predict future values

• Sentiment Analysis
 • Detects subtle emotional content in text to determine if the content is favorable or unfavorable towards the subject of the text
Cloud Analytics

• Analytics being offered as a cloud service
 • Elastic scalability
 • Lower cost of ownership
• Driving new interest in functional languages
 • Scheme
 • F#

Big Data

• Data that are difficult to process using conventional data processing means

• Three Vs of Big Data:
 • Volume – quantity of data
 • Velocity – speed that data must be processed
 • Variety – semi-structured and unstructured data
Big Data

• What is fueling the big data movement?
 • Sensors are everywhere and growing fast
 • Human interaction with devices is increasing
 • Machines are generating lots of data as well
 • 90% of world’s data was created in last 2 years
 • We are creating 2.5 exabytes of data daily
 • that’s 2,500,000,000,000,000,000,000 bytes (source: IBM)

• Why is big data important?
 • More data => better knowledge => better decisions
Where is this all going?

• Certain:
 • More data (doubling every 18-24 months)
 • More users performing data analysis
 • More machine decision making

• Probably:
 • Statistics will become the next hot profession
 • Data scientists will emerge

• Possibly:
 • Machines making scientific discoveries
Conclusion

• How do we transform data into knowledge?
 1. Collect Data
 2. Organize Data
 3. Analyze Data
Review

Collect Data

Organize Data

Analyze Data

Sensor-based System

Transaction-based System

Semi-/Un-Structured System

Data ETL

Data Warehouse

Data Mart

Analysis Cube

Statistical Analysis

Data Visualization

Data Exploration

Data Mining

Machine Learning
Feedback

• Did you find this presentation valuable?
• What could I do to make the presentation better?
• What other presentations would you like to see?
 • Data Visualization
 • Data Exploration
 • Data Mining
 • Machine Learning
Contact Info

Matthew Renze

matthew@renzeconsulting.com

Renze Consulting

www.renzeconsulting.com